/* Copyright (c) 2003,2004 Jeremy Kerr & Rusty Russell This file is part of nfsim. nfsim is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. nfsim is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with nfsim; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "utils.h" #include "field.h" #if 0 #include "tui.h" #endif /* Root of talloc trees for different allocators */ void *__skb_ctx, *__vmalloc_ctx, *__kmalloc_ctx, *__kmalloc_atomic_ctx, *__kmem_cache_ctx, *__lock_ctx, *__timer_ctx; unsigned long num_physpages = 1024; unsigned long jiffies = INITIAL_JIFFIES; u32 htonl(u32 hostlong) { return __cpu_to_be32(hostlong); } u16 htons(u16 hostshort) { return __cpu_to_be16(hostshort); } u32 ntohl(u32 netlong) { return __be32_to_cpu(netlong); } u16 ntohs(u16 netshort) { return __be16_to_cpu(netshort); } /* skbuff */ static int nfsim_seq; #if 0 /* We hide the shared info in hidden field (kernel puts it after * data). This way valgrind can spot overruns. */ struct skb_shared_info *skb_shinfo(struct sk_buff *skb) { return field_value(skb, "skb_shinfo"); } #endif struct skb_extra_info { unsigned char *data; unsigned int len, writable_len; }; /* Create an skb: first amount that is linear, then the rest. */ struct sk_buff *nfsim_nonlinear_skb(const void *data1, unsigned int size1, const void *data2, unsigned int size2) { struct sk_buff *skb; #ifdef WANT_SKB_SHINFO struct skb_extra_info *extra; struct skb_shared_info *sinfo; #endif /* Skb header. */ skb = talloc_zero(__skb_ctx, struct sk_buff); #ifdef WANT_SKB_SHINFO /* Save copy of data, all non-writable. */ extra = talloc(skb, struct skb_extra_info); extra->len = size1 + size2; extra->writable_len = 0; extra->data = talloc_size(extra, extra->len); memcpy(extra->data, data1, size1); memcpy(extra->data + size1, data2, size2); field_attach(skb, "extra_data", extra); /* Place linear data in skb. */ skb->data = talloc_memdup(skb, extra->data, size1); #endif #ifdef WANT_SKB_SHINFO sinfo = talloc(skb, struct skb_shared_info); field_attach(skb, "skb_shinfo", sinfo); #endif atomic_set(&skb->users, 1); skb->head = skb->data; skb->end = skb->tail = skb->data + size1; skb->len = size1 + size2; skb->seq = ++nfsim_seq; #ifdef WANT_SKB_SHINFO /* set shinfo fields */ skb_shinfo(skb)->tso_size = 0; #endif return skb; } /* Normal, linear skb. */ /*static*/ struct sk_buff *nfsim_skb(unsigned int size) { struct sk_buff *skb; #ifdef WANT_SKB_SHINFO struct skb_shared_info *sinfo; #endif /* Skb header. */ skb = talloc_zero(__skb_ctx, struct sk_buff); /* Place linear data in skb. */ skb->data = talloc_size(skb, size); #ifdef WANT_SKB_SHINFO sinfo = talloc(skb, struct skb_shared_info); field_attach(skb, "skb_shinfo", sinfo); #endif atomic_set(&skb->users, 1); skb->head = skb->tail = skb->data; skb->len = 0; skb->end = skb->data + size; skb->seq = ++nfsim_seq; #ifdef WANT_SKB_SHINFO /* set shinfo fields */ skb_shinfo(skb)->tso_size = 0; #endif return skb; } #ifdef NFSIM_CHECK void nfsim_check_packet(const struct sk_buff *skb) { struct skb_extra_info *extra = field_value(skb, "extra_data"); unsigned int linear_len = skb->end - skb->head; if (!extra) return; /* Packet should not have been changed where not writable. */ if (!memeq(skb->head + extra->writable_len, extra->data + extra->writable_len, linear_len - extra->writable_len)) barf("skb modified without being made writable!"); } /* Internal routine to say we updated skb. */ void nfsim_update_skb(struct sk_buff *skb, void *vp, unsigned int size) { unsigned char *p = (unsigned char *)vp; struct skb_extra_info *extra = field_value(skb, "extra_data"); unsigned int off = p - (unsigned char *)skb->head; if (!extra) return; if (off + size > extra->len) barf("Bad nfsim_update_skb %i"); /* If it wasn't already writable, copy update to master. */ if (off + size > extra->writable_len) memcpy(extra->data + off, p, size); nfsim_check_packet(skb); } #else #define nfsim_check_packet(skb) #define nfsim_update_skb(skb, vp, size) #endif /* Defined to return a linear skb. */ struct sk_buff *alloc_skb(unsigned int size, int priority) { if (should_i_fail(__func__)) return NULL; return nfsim_skb(size); } void kfree_skb(struct sk_buff *skb) { #ifdef CONFIG_NETFILTER nf_conntrack_put(skb->nfct); #endif if (skb->dst) dst_release(skb->dst); talloc_free(skb); } unsigned char *skb_put(struct sk_buff *skb, unsigned int len) { unsigned char *tmp = skb->tail; skb->tail += len; skb->len += len; if (skb->tail > skb->end) barf("skb_put will overrun buffer"); return tmp; } unsigned char *skb_push(struct sk_buff *skb, unsigned int len) { skb->data -= len; skb->len += len; if (skb->data < skb->head) barf("skb_push will underrun buffer"); return skb->data; } unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) { skb->data += len; skb->len -= len; if (skb->data < skb->head) barf("skb_pull will underrun buffer"); return skb->data; } /* Defined to return a writable, linear skb. */ struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, int gfp_mask) { struct sk_buff *n; nfsim_check_packet(skb); if (should_i_fail(__func__)) return NULL; n = nfsim_skb(newheadroom + skb->len + newtailroom); skb_reserve(n, newheadroom); skb_put(n, skb->len); if (skb_copy_bits(skb, 0, n->data, skb->len)) barf("skb_copy_bits failed"); copy_skb_header(n, skb); return n; } unsigned int skb_headroom(const struct sk_buff *skb) { return skb->data - skb->head; } unsigned int skb_tailroom(const struct sk_buff *skb) { return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; } unsigned int skb_cow(struct sk_buff *skb, unsigned int headroom) { int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb); if (delta < 0) delta = 0; if (delta || skb_cloned(skb)) { /* XXX not yet written */ lsw_abort(); //return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC); } return 0; } void skb_reserve(struct sk_buff *skb, unsigned int len) { skb->data += len; skb->tail += len; if (skb->data > skb->end || skb->tail > skb->end) barf("skb_reserve: too much"); } /* careful with this one.. */ #define __copy(member) new->member = old->member void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) { unsigned long offset = new->data - old->data; __copy(dev); __copy(seq); __copy(local_df); __copy(len); __copy(csum); __copy(ip_summed); __copy(nfmark); __copy(nfcache); __copy(nfct); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 9) __copy(nfctinfo); #endif nf_conntrack_get(new->nfct); /* dst_clone() ? */ __copy(dst); new->h.raw = old->h.raw + offset; new->nh.raw = old->nh.raw + offset; #if 0 if (field_exists(old, "dump_flags")) field_attach(new, "dump_flags", talloc_strdup(NULL, field_value(old, "dump_flags"))); #endif } #undef __copy static inline int nfsim_linear_length(const struct sk_buff *skb) { return skb->end - skb->data; } int skb_copy_bits(const struct sk_buff *skb, int offset, void *vto, int len) { unsigned char *to = (unsigned char *)vto; #ifdef WANT_SKB_SHINFO struct skb_extra_info *extra = field_value(skb, "extra_data"); #endif nfsim_check_packet(skb); if (offset > (int)skb->len - len) return -EFAULT; /* Can we copy some from linear part of packet? */ if (offset < nfsim_linear_length(skb)) { int len_from_data = min(len, nfsim_linear_length(skb) - offset); memcpy(to, skb->data + offset, len_from_data); offset += len_from_data; len -= len_from_data; to += len_from_data; } #ifdef WANT_SKB_SHINFO /* Copy from nonlinear part. */ if (extra) memcpy(to, extra->data + skb_headroom(skb) + offset, len); else assert(len == 0); #endif return 0; } struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) { int delta = headroom - skb_headroom(skb); return skb_copy_expand(skb, delta > 0 ? delta : 0, 0, GFP_ATOMIC); } int pskb_may_pull(struct sk_buff *skb, unsigned int len) { return len <= skb_headroom(skb); } static int __skb_checksum_help(struct sk_buff *skb, int inward) { unsigned int csum; int ret = 0, offset = skb->h.raw - skb->data; if (inward) { skb->ip_summed = CHECKSUM_NONE; goto out; } if (skb_shared(skb) || skb_cloned(skb)) { struct sk_buff *newskb = skb_copy(skb, GFP_ATOMIC); if (!newskb) { ret = -ENOMEM; goto out; } if (skb->sk) skb_set_owner_w(newskb, skb->sk); kfree_skb(skb); skb = newskb; } if (offset > (int)skb->len) BUG(); csum = skb_checksum(skb, offset, skb->len - offset, 0); offset = skb->tail - skb->h.raw; if (offset <= 0) BUG(); if (skb->csum + 2 > offset) BUG(); *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum); skb->ip_summed = CHECKSUM_NONE; out: return ret; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 7) int skb_checksum_help(struct sk_buff *skb) { return __skb_checksum_help(skb, 0); } #elif LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 10) int skb_checksum_help(struct sk_buff **pskb, int inward) { return __skb_checksum_help(*pskb, inward); } #else int skb_checksum_help(struct sk_buff *skb, int inward) { return __skb_checksum_help(skb, inward); } #endif int skb_cloned(const struct sk_buff *skb) { return skb->cloned; } int skb_shared(const struct sk_buff *skb) { return atomic_read(&skb->users) != 1; } unsigned int skb_checksum(const struct sk_buff *skb, int offset, int len, unsigned int csum) { char data[len]; if (skb_copy_bits(skb, offset, data, len) != 0) barf("skb_checksum invalid length"); return csum_partial(data, len, csum); } void __skb_trim(struct sk_buff *skb, unsigned int len) { skb->len = len; skb->tail = skb->data + len; } void skb_trim(struct sk_buff *skb, unsigned int len) { if (skb->len > len) __skb_trim(skb, len); } void skb_orphan(struct sk_buff *skb) { if (skb->destructor) skb->destructor(skb); skb->destructor = NULL; skb->sk = NULL; } int skb_is_nonlinear(const struct sk_buff *skb) { nfsim_check_packet(skb); return skb->data + skb->len > skb->end; } int skb_ip_make_writable(struct sk_buff **pskb, unsigned int writable_len) { struct sk_buff *new; struct skb_extra_info *extra; char data[(*pskb)->len]; nfsim_check_packet(*pskb); if (writable_len > (*pskb)->len) return 0; if (should_i_fail(__func__)) return 0; /* Use skb_copy_bits, which handles packet whatever shape. */ skb_copy_bits(*pskb, 0, data, (*pskb)->len); extra = field_value(*pskb, "extra_data"); if (extra && writable_len < extra->writable_len) writable_len = extra->writable_len; /* Always reallocate, to catch cached pointers. */ new = nfsim_nonlinear_skb(data, writable_len, data + writable_len, (*pskb)->len - writable_len); copy_skb_header(new, *pskb); extra = field_value(new, "extra_data"); extra->writable_len = writable_len; if ((*pskb)->sk) skb_set_owner_w(new, (*pskb)->sk); kfree_skb(*pskb); *pskb = new; return 1; } int skb_linearize(struct sk_buff *skb, int len) { unsigned char *new_head; unsigned int headroom = skb_headroom(skb); nfsim_check_packet(skb); if (should_i_fail(__func__)) return -ENOMEM; new_head = talloc_size(skb, skb->len + headroom); memcpy(new_head, skb->head, headroom); skb_copy_bits(skb, 0, new_head + headroom, skb->len); skb->data = new_head + headroom; skb->tail = skb->end = new_head + headroom + skb->len; talloc_free(skb->head); skb->head = new_head; /* Don't need this on writable, linear packets. */ field_detach(skb, "extra_data"); return 0; } /* Either copy into buffer or give pointer to in-place. */ void *skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) { nfsim_check_packet(skb); if (offset + len > skb->len) return NULL; /* We should test copying even if not required. */ if (!should_i_fail_once(__func__)) { if (offset + len <= nfsim_linear_length(skb)) return skb->data + offset; } if (skb_copy_bits(skb, offset, buffer, len) < 0) barf("skb_header_pointer: logic error"); return buffer; } void sock_hold(struct sock *sk) { atomic_inc(&sk->sk_refcnt); } void sock_put(struct sock *sk) { if (atomic_dec_and_test(&sk->sk_refcnt)) free(sk); } void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) { /* sock_hold(sk); skb->sk = sk; skb->destructor = sock_wfree; atomic_add(skb->truesize, &sk->sk_wmem_alloc); */ } #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 9) void nf_conntrack_put(struct nf_ct_info *nfct) { if (nfct && atomic_dec_and_test(&nfct->master->use)) nfct->master->destroy(nfct->master); } void nf_conntrack_get(struct nf_ct_info *nfct) { if (nfct) atomic_inc(&nfct->master->use); } #else void nf_conntrack_put(struct nf_conntrack *nfct) { if (nfct && atomic_dec_and_test(&nfct->use)) nfct->destroy(nfct); } void nf_conntrack_get(struct nf_conntrack *nfct) { if (nfct) atomic_inc(&nfct->use); } void (*ip_ct_attach)(struct sk_buff *, struct sk_buff *); #endif /* 2.6.9 */ void nf_reset(struct sk_buff *skb) { nf_conntrack_put(skb->nfct); skb->nfct = NULL; #ifdef CONFIG_NETFILTER_DEBUG skb->nf_debug = 0; #endif } void nf_reset_debug(struct sk_buff *skb) { #ifdef CONFIG_NETFILTER_DEBUG skb->nf_debug = 0; #endif } u32 dst_path_metric(struct dst_entry *dst, int metric) { return 1500; /* return dst->path->metrics[metric-1]; */ } u32 dst_pmtu(struct dst_entry *dst) { u32 mtu = dst_path_metric(dst, RTAX_MTU); /* Yes, _exactly_. This is paranoia. */ barrier(); return mtu; } int dst_output(struct sk_buff *skb) { assert(skb); assert(skb->dst); assert(skb->dst->output); return skb->dst->output(skb); } int dst_input(struct sk_buff *skb) { assert(skb); assert(skb->dst); assert(skb->dst->input); return skb->dst->input(skb); } struct ethhdr *eth_hdr(const struct sk_buff *skb) { return (struct ethhdr *)skb->mac.raw; } /* spinlock: use talloc for unreleased lock detection */ void __generic_write_lock(spinlock_t *lock, const char *location) { if (lock->lock) panic("write lock (called at %s) already held by %s.\n", location, lock->location); lock->lock = -1; lock->location = talloc_strdup(__lock_ctx, location); } void __generic_write_unlock(spinlock_t *lock, const char *location) { if (lock->lock != -1) { fprintf(stderr, "write lock (called at %s) isn't held\n", location); } lock->lock = 0; talloc_free(lock->location); lock->location = NULL; } void __generic_read_lock(spinlock_t *lock, const char *location) { if (lock->lock == -1) panic("read lock (called at %s) already held by %s.\n", location, lock->location); lock->lock++; talloc_free(lock->location); lock->location = talloc_strdup(__lock_ctx, location); } void __generic_read_unlock(spinlock_t *lock, const char *location) { if (lock->lock <= 0) { fprintf(stderr, "read lock (called at %s) isn't held\n", location); } lock->lock--; if (lock->lock == 0) { talloc_free(lock->location); lock->location = NULL; } } /* semaphore */ void __down(struct semaphore *sem, const char *location) { if (!(sem->count)--) barf("down() unavailable at %s\n", location); field_attach_static(sem, location, NULL); } int __down_interruptible(struct semaphore *sem, const char *location) { if (should_i_fail(location)) return -EINTR; if (!(sem->count)--) barf("down() unavailable at %s\n", location); field_attach_static(sem, location, NULL); return 0; } void __up(struct semaphore *sem, const char *location) { if (++(sem->count) > sem->limit) panic("up() unavailable at %s\n", location); field_detach_all(sem); } int __down_trylock(struct semaphore *sem, const char *location) { if (sem->count) { sem->count--; field_attach_static(sem, location, NULL); return 0; } return 1; } void sema_init(struct semaphore *sem, int val) { sem->count = val; sem->limit = val; } /* bitops.h */ int test_bit(int nr, const long * addr) { int mask; addr += nr >> 5; mask = 1 << (nr & 0x1f); return (mask & *addr) != 0; } int set_bit(int nr, long * addr) { int mask, retval; addr += nr >> 5; mask = 1 << (nr & 0x1f); cli(); retval = (mask & *addr) != 0; *addr |= mask; sti(); return retval; } int clear_bit(int nr, long * addr) { int mask, retval; addr += nr >> 5; mask = 1 << (nr & 0x1f); cli(); retval = (mask & *addr) != 0; *addr &= ~mask; sti(); return retval; } /* timer */ LIST_HEAD(__timers); LIST_HEAD(__running_timers); void __init_timer(struct timer_list * timer, struct module *owner, const char *function) { timer->magic = TIMER_MAGIC; timer->owner = owner; timer->ownerfunction = function; timer->use = NULL; } void __add_timer(struct timer_list *timer, const char *location) { struct timer_list *t; list_for_each_entry(t, &__timers, entry) { if (time_after(t->expires, timer->expires)) break; } list_add_tail(&timer->entry, &t->entry); timer->use = talloc_strdup(__timer_ctx, location); } int __del_timer(struct timer_list *timer, const char *location) { if (!timer->use) return 0; if (should_i_fail_once(location)) { /* Pretend it's running now. */ list_del(&timer->entry); list_add(&timer->entry, &__running_timers); return 0; } list_del(&timer->entry); talloc_free(timer->use); timer->use = NULL; return 1; } static bool do_running_timers(const char *cmd) { struct timer_list *t, *next; list_for_each_entry_safe(t, next, &__running_timers, entry) { list_del(&t->entry); talloc_free(t->use); t->function(t->data); } return true; } void schedule(void) { do_running_timers("schedule()"); } static void setup_running_timers(void) { #if 0 tui_register_pre_post_hook(NULL, do_running_timers); #endif } init_call(setup_running_timers); int timer_pending(const struct timer_list * timer) { /* straightforward at present - timers are guaranteed to be run at the expiry time */ return timer->expires > jiffies; } void increment_time(unsigned int inc) { struct list_head *i; struct timer_list *t; jiffies += inc; i = __timers.next; while (i != &__timers) { t = list_entry(i, struct timer_list, entry); if (time_before(jiffies, t->expires)) break; nfsim_log(LOG_UI, "running timer to %s:%s()", t->owner->name, t->ownerfunction, t->function); i = i->next; list_del(&t->entry); talloc_free(t->use); t->use = NULL; t->function(t->data); } } /* notifier */ /*static rwlock_t notifier_lock = RW_LOCK_UNLOCKED;*/ int notifier_chain_register(struct notifier_block **list, struct notifier_block *n) { /* Detect if they don't unregister. */ field_attach_static(n, "notifier_chain_register", NULL); /*write_lock(¬ifier_lock);*/ while (*list) { if (n->priority > (*list)->priority) break; list = &((*list)->next); } n->next = *list; *list = n; /*write_unlock(¬ifier_lock);*/ return 0; } int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n) { /*write_lock(¬ifier_lock);*/ while ((*nl) != NULL) { if ((*nl) == n) { *nl = n->next; /*write_unlock(¬ifier_lock);*/ field_detach_all(n); return 0; } nl = &((*nl)->next); } /*write_unlock(¬ifier_lock);*/ return -ENOENT; } int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v) { int ret = NOTIFY_DONE; struct notifier_block *nb = *n; while (nb) { ret = nb->notifier_call(nb, val, v); if (ret & NOTIFY_STOP_MASK) return ret; nb = nb->next; } return ret; } /* random */ void get_random_bytes(void *buf, int nbytes) { while (nbytes--) *((char *)buf + nbytes) = random(); } /* cache */ void *__malloc(unsigned int size, void *ctx, const char *location) { if (should_i_fail(__func__)) return NULL; return _talloc_zero(ctx, size, location); } #if 0 kmem_cache_t *kmem_cache_create(const char *name, size_t objsize, size_t offset, unsigned long flags, void (*ctor)(void *, kmem_cache_t *, unsigned long), void (*dtor)(void *, kmem_cache_t *, unsigned long)) { kmem_cache_t *cache; if (should_i_fail(__func__)) return NULL; cache = talloc(__kmem_cache_ctx, kmem_cache_t); cache->name = name; cache->objsize = objsize; cache->ctor = ctor; cache->dtor = dtor; INIT_LIST_HEAD(&cache->objs); return cache; } int kmem_cache_destroy(kmem_cache_t *cache) { talloc_free(cache); return 0; } void *kmem_cache_alloc(kmem_cache_t *cache, int flags) { struct kmem_cache_obj *obj; if (should_i_fail(__func__)) return NULL; obj = talloc(cache, struct kmem_cache_obj); obj->ptr = talloc_size(obj, cache->objsize); list_add(&obj->entry, &cache->objs); return obj->ptr; } void kmem_cache_free(kmem_cache_t *cache, void *ptr) { struct kmem_cache_obj *i; list_for_each_entry(i, &(cache->objs), entry) { if (i->ptr == ptr) { list_del(&i->entry); talloc_free(i); return; } } panic("[cache] attempting to free non-cache memory\n"); } #endif unsigned long __get_free_pages(unsigned int gfp_mask, unsigned int order) { return (unsigned long)(kmalloc(PAGE_SIZE << order, gfp_mask)); } void free_pages(unsigned long addr, unsigned int order) { memset((void *)addr, 0, PAGE_SIZE << order); kfree((void *)addr); } int get_order(unsigned long size) { int order; size = (size - 1) >> (PAGE_SHIFT - 1); order = -1; do { size >>= 1; order++; } while (size); return order; } /* jhash.h: Jenkins hash support. * * Copyright (C) 1996 Bob Jenkins (bob_jenkins@burtleburtle.net) * * http://burtleburtle.net/bob/hash/ * * These are the credits from Bob's sources: * * lookup2.c, by Bob Jenkins, December 1996, Public Domain. * hash(), hash2(), hash3, and mix() are externally useful functions. * Routines to test the hash are included if SELF_TEST is defined. * You can use this free for any purpose. It has no warranty. * * Copyright (C) 2003 David S. Miller (davem@redhat.com) * * I've modified Bob's hash to be useful in the Linux kernel, and * any bugs present are surely my fault. -DaveM */ /* NOTE: Arguments are modified. */ #define __jhash_mix(a, b, c) \ { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } /* The golden ration: an arbitrary value */ #define JHASH_GOLDEN_RATIO 0x9e3779b9 /* The most generic version, hashes an arbitrary sequence * of bytes. No alignment or length assumptions are made about * the input key. */ u32 jhash(void *key, u32 length, u32 initval) { u32 a, b, c, len; u8 *k = key; len = length; a = b = JHASH_GOLDEN_RATIO; c = initval; while (len >= 12) { a += (k[0] + ((u32)k[1] << 8) + ((u32)k[2] << 16) + ((u32)k[3] << 24)); b += (k[4] + ((u32)k[5] << 8) + ((u32)k[6] << 16) + ((u32)k[7] << 24)); c += (k[8] + ((u32)k[9] << 8) + ((u32)k[10] << 16) + ((u32)k[11] << 24)); __jhash_mix(a, b, c); k += 12; len -= 12; } c += length; switch (len) { case 11: c += ((u32)k[10] << 24); case 10: c += ((u32)k[9] << 16); case 9: c += ((u32)k[8] << 8); case 8: b += ((u32)k[7] << 24); case 7: b += ((u32)k[6] << 16); case 6: b += ((u32)k[5] << 8); case 5: b += k[4]; case 4: a += ((u32)k[3] << 24); case 3: a += ((u32)k[2] << 16); case 2: a += ((u32)k[1] << 8); case 1: a += k[0]; } __jhash_mix(a, b, c); return c; } /* A special optimized version that handles 1 or more of u32s. * The length parameter here is the number of u32s in the key. */ u32 jhash2(u32 *k, u32 length, u32 initval) { u32 a, b, c, len; a = b = JHASH_GOLDEN_RATIO; c = initval; len = length; while (len >= 3) { a += k[0]; b += k[1]; c += k[2]; __jhash_mix(a, b, c); k += 3; len -= 3; } c += length * 4; switch (len) { case 2: b += k[1]; case 1: a += k[0]; } __jhash_mix(a, b, c); return c; } /* A special ultra-optimized versions that knows they are hashing exactly * 3, 2 or 1 word(s). * * NOTE: In partilar the "c += length; __jhash_mix(a,b,c);" normally * done at the end is not done here. */ u32 jhash_3words(u32 a, u32 b, u32 c, u32 initval) { a += JHASH_GOLDEN_RATIO; b += JHASH_GOLDEN_RATIO; c += initval; __jhash_mix(a, b, c); return c; } u32 jhash_2words(u32 a, u32 b, u32 initval) { return jhash_3words(a, b, 0, initval); } u32 jhash_1word(u32 a, u32 initval) { return jhash_3words(a, 0, 0, initval); } int request_module(const char * name, ...) { return 0; } void kernelenv_init(void) { __vmalloc_ctx = talloc_named_const(nfsim_tallocs, 1, "vmallocs"); __kmalloc_ctx = talloc_named_const(nfsim_tallocs, 1, "kmallocs"); __kmalloc_atomic_ctx = talloc_named_const(nfsim_tallocs, 1, "kmallocs (atomic)"); __skb_ctx = talloc_named_const(nfsim_tallocs, 1, "skbs"); __kmem_cache_ctx = talloc_named_const(nfsim_tallocs, 1, "kmem caches"); __lock_ctx = talloc_named_const(nfsim_tallocs, 1, "locks"); __timer_ctx = talloc_named_const(nfsim_tallocs, 1, "timers"); } int IS_ERR(const void *ptr) { return (unsigned long)ptr > (unsigned long)-1000L; } void atomic_inc(atomic_t *v) { v->counter++; } void atomic_dec(atomic_t *v) { v->counter--; } int atomic_dec_and_test(atomic_t *v) { return --(v->counter) == 0; }